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1 Reduced Density Matrix

1.1 Basics
1 Generally, we define a partial trace of a matrix by the following. Suppose V and W are two vector spaces of
dimension m and n. Let e1, · · · , em be a basis for V , likewise f1, · · · , fn for W . Let T be an operator over V ⊗W .
It’s elements can be represented by tkl,ij relative to the basis ek ⊗ fl. The partial trace over W is a linear operator
on V defined by

bk,i =
∑
j

tkj,ij

In the context of quantum mechanics, this turns out to be quite useful. Suppose we have a product of Hilbert spaces,
V and W , H = V ⊗W . Suppose M is an operator on V , which can be made an operator on V ⊗W by taking M ⊗1.
Because 〈O〉 = Tr(ρ̂Ô), if ρV is the reduced density matrix on V , then we’d want

Tr ((M ⊗ 1)ρ) = Tr
(
MρV

)
This is exactly true when ρV = TrW ρ, the partial trace of ρ over W .

A simple physical example is as follows2: Define a qubit over a 2-dimensional vector space as |u〉 = u0|0〉+u1|1〉.
Now consider a second qubit, |v〉. In order to describe both states simultaneously, we need to move into product
space:

|u〉 ⊗ |v〉 =

(∑
α

uα|α〉

)
⊗

∑
β

uβ |β〉

 =
∑
α,β

uαuβ |α〉 ⊗ |β〉

This form, however, implies that the two qubits are not entangled, i.e. have no correlation. More generally, the state
could be entangled:

|w〉 =
∑
α,β

wα,β |α〉 ⊗ |β〉

When det(wα,β) 6= 0 the state is entangled. The density operator is

ρ̂ = |w〉〈w| =
∑

α,β,α′,β′

|α〉 ⊗ |β〉wα,βw∗α′,β′〈β′| ⊗ 〈α′|

ρ̂(1) =
∑

α,β,α′,β′

|α〉 ⊗ 〈β|β〉wα,βw∗α′,β′〈β′|β〉 ⊗ 〈α′|

=
∑
α,β,α′

|α〉wα,βw∗α′,β〈α′|

1From Wikipedia.org: search “partial trace”.
2Example taken from John Stack’s (UIUC) 580 homework assignment.

1



Note the reduced operator now acts on states of the first qubit only.
Now return to our Coulomb hamiltonian. At zero temperature, we also can consider the density matrix, however,

it will simply be a projection onto the ground state:

ρ̂|T=0 = |Ψ0〉〈Ψ0|

But we may also define a one-body density matrix by tracing out degrees of freedom.

|Ψ0〉 =

∫
d3r1 · · · d3rN |r1〉 · · · |rN 〉Ψ0(r1, · · · , rN )

=⇒ ρ̂ = |Ψ0〉〈Ψ0| =
∫
d3r1 · · · d3rNd3r′1 · · · d3r′N |r1〉 · · · |rN 〉Ψ0(r1, · · · , rN )Ψ∗0(r′1, · · · , r′N )〈r′1| · · · 〈r′N |

Now trace over the position of all the electrons except one:

ρ̂(1) =

∫
d3r1 · · · d3rNd3r′1 · · · d3r′N |r1〉〈r2|r2〉 · · · 〈rN |rN 〉Ψ0(r1, · · · , rN )Ψ∗0(r′1, · · · , r′N )〈r′1|〈r′2|r2〉 · · · 〈r′N |rN 〉

=

∫
d3r1 · · · d3rNd3r′1|r1〉Ψ0(r1, · · · , rN )Ψ∗0(r′1, r2, · · · , rN )〈r′1|

=⇒ ρ̂(1)(r, s) =

∫
d3r2 · · · d3rNΨ0(r, r2, · · · , rN )Ψ∗0(s, r2, · · · , rN )

This disagrees with Paul Kent’s definition in his thesis, which I think is a typo. Probably this doesn’t matter for
any calculations?

Further, we can express it in a basis of one-body states:

|r〉 =
∑
i

|φi〉φ∗i (r)

ρ
(1)
ij = 〈φi|ρ̂(1)|φj〉 =

∫
d3rd3r′d3r2 · · · d3rN φ∗i (r)φj(r

′)Ψ0(r, r2, · · · , rN )Ψ∗0(r′1, r2, · · · , rN )

ρ(1)(r, r′) =
∑
ij

ρijφ(r)φ∗(r′)

(note this may be off by a factor of N).

1.2 Special case of Slater Determinants

References: Paul Kent’s Thesis

1.2.1 One-body

The one body density matrix can be written down in position space as:

ρ(1)(r1, s1) = N

∫
d3r2 · · · d3rNΨ(r1, ..., rN )Ψ∗(s1, r2, ..., rN ).

The normalization is such that
∫
ρ(1)(r, r)d3r = N , i.e. the density integrates to the number of electrons.

The Slater determinant form is, by definition,

Ψ(r1, ..., rN ) =
1√
N !

∑
{iα}

ε{iα}
∏
α

φiα(rα).

Plugging this form into the RDM definition,

ρ(1)(r1, s1) =
N

N !

∫
d3r2 · · · d3rN

∑
{iα,jβ}

ε{iα}ε{jβ}
∏
α

φiα(rα)φ∗jα(rα).

=
1

(N − 1)!

∑
{iα,jβ}

ε{iα}ε{jβ}φi1(r1)φ∗j1(s1).
∏
α6=1

∫
d3rαφiα(rα)φ∗jα(rα).

=
1

(N − 1)!

∑
{iα,jβ}

ε{iα}ε{jβ}φi1(r1)φ∗j1(s1).
∏
α6=1

δiα,jα .
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The after summing over the jβ indices, the δiα,jα sets all the orbital indices the same. This is because it sets all
the indices except i1, j1 the same, but after that, there’s only one option left for them to be, which is equal to each
other. This squares the Levi-Cevitas and they therefore go away. The sums over the other indices can then cancel
the factor in front.

ρ(1)(r1, s1) =
∑
i1

φi1(r1)φ∗i1(s1).

Thus it becomes a simple sum over the orbitals.

1.2.2 Two-body

The case of the 2-RDM is similar, but an extra term arises when evaluating the δ-parts. The definition is now

ρ(2)(r1, r2, s1, s2) = N(N − 1)

∫
d3r3 · · · d3rNΨ(r1, ..., rN )Ψ∗(s1, s2, r3, ..., rN )

I set the normalization to make things work out nicer at the end, but I’m not sure that this is the convention that
people use. Following the same steps,

ρ(2)(r1, r2, s1, s2) =
1

(N − 2)!

∑
{iα,jβ}

ε{iα}ε{jβ}φi1(r1)φi2(r2)φ∗j1(s1)φ∗j2(s2)
∏
α6=1,2

δiα,jα .

Now all except two indices are set equal. One option for the first set of indices is i1 = j1 and i2 = j2, and another
option is i1 = j2 and i2 = j1. In the first case, the Levi-Cevita symbol squares; in the second case, it squares with a
sign change. Summing over the {jβ} carries out the δ action. The other indices cancel out the factor in front.

ρ(2)(r1, r2, s1, s2) =
∑
i1,i2

[
φi1(r1)φi2(r2)φ∗i1(s1)φ∗i2(s2)− φi1(r1)φi2(r2)φ∗i2(s1)φ∗i1(s2)

]
=
∑
i1

φi1(r1)φ∗i1(s1)
∑
i2

φi2(r2)φ∗i2(s2)−
∑
i1

φi1(r1)φ∗i1(s2)
∑
i2

φi2(r2)φ∗i2(s1)

= ρ(1)(r1, s1)ρ(1)(r2, s2)− ρ(1)(r1, s2)ρ(1)(r2, s1)

Thus, for this special state, the 2-RDM is expressible in terms of 1-RDM elements.

1.2.3 Different spin case

So far all this analysis has assumed the spins are the same, and therefore the operations are all occurring for the
same-spin determinants. In the case that the spin indices of r1 and r2 are different, the particles are distinguishable,
and therefore should come out more symmetric. The way this comes about mathematically is that now, two Slater
determinants are involved. The integrals factor over the two determinants.

ρ(2)(r1,σ, r2,χ, s1,σ, s2,χ) = N(N − 1)

∫
d3r3 · · · d3rN

×Ψ∗σ(r1,σ, ..., rNσ )Ψ∗χ(r2,χ, ..., rNχ)Ψσ(s1,σ, ..., rNσ )Ψχ(s2,χ, ..., rNχ)

= N(N − 1)

∫
d3RσΨ∗σ(r1,σ, ..., rNσ

)Ψσ(s1,σ, ..., rNσ
)

×
∫
d3RχΨ∗χ(r2,χ, ..., rNχ)Ψχ(s2,χ, ..., rNχ)

= ρ(1)(r1,σ, s1,σ)ρ(1)(r2,χ, s2,χ).

Thus, it factors symmetrically, as I suggested.

2 Many-body operators written in second-quantization notation

If we want to express a one-body operator: an operator which can be described with a one-body basis, such as kinetic
energy, we can do so as follows:

Â ≡
∑
ij

ĉ†iAij ĉj
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This is because Â is completely determined by it’s action on a one-body basis |φi〉 ∀i. Let |Ω〉 be the ground (vacuum)
state.

〈φi′ |Â|φj′〉 = 〈φi′ |
∑
ij

ĉ†iAij ĉj |φj′〉

=
∑
ij

〈Ω|ĉi′ ĉ†iAij ĉj ĉ
†
j′ |Ω〉

=
∑
ij

〈Ω|(δii′ − ĉ†i ĉi′)Aij(δjj′ − ĉ
†
j′ ĉj)|Ω〉

=
∑
ij

〈Ω|δii′δjj′Aij |Ω〉

= Ai′j′

For two body operators,

Â ≡
∑

i1i2j1j2

ĉ†i1 ĉ
†
i2
Aij ĉj1 ĉj2

Then in this case,

〈φi′1 ⊗ φi′2 |Â|φj′1 ⊗ φj′2〉 =
∑

i1i2j1j2

〈Ω|ĉi′1 ĉi′2 ĉ
†
i2
ĉ†i1Ai1i2j1j2 ĉj1 ĉj2 ĉ

†
j′2
ĉ†j′1
|Ω〉

Note that

ĉj1 ĉj2 ĉ
†
j′2
ĉ†j′1
|Ω〉 = (δj1j′1δj2j′2 − δj1j′2δj2j′1)|Ω〉

thus, i.e. direct and exchange.

〈φi1 ⊗ φi2 |Â|φj1 ⊗ φj2〉 = Ai1j1i2j2 +Ai2j2i1j1 −Ai1j2i2j1 −Ai2j1i1j2
This is just the antisymmetic combination of matrix elements.

2.1 One-body RDM

3 Extended Koopman’s theorem

From reference doi: 10.1063/1.461875.
Extended Koopman’s theorem comes from a desire to compute the ionization energy from a single exact calcu-

lation of a wavefunction, without need to also compte the ionized wavefunction. Defining this energy difference to
be

∆E = EN − EN−1 = 〈ΨN |H|ΨN 〉 − 〈Ψ
N |q̂†Hq̂|ΨN 〉
〈ΨN |q̂†q̂|ΨN 〉

= −〈Ψ
N |q̂†[Hq̂]|ΨN 〉
〈ΨN |q̂†q̂|ΨN 〉

Where q̂ is a variationally optimized linear combination of the destruction operators of some basis:

q̂ ≡
∑
i

αiĉi

Writing

Vij = −〈ΨN |ĉ†i [H, ĉj ]|Ψ
N 〉

then q̂ is defined by the soltion to (V −∆Eρ1)α = 0 where ρ1 is the one-body reduced density matrix. This is just
a rewriting of the definition. Putting in a second-quantized hamiltonain, the relation becomes:

Vij =
∑
k

hikρ
1
jk + 2

∑
klm

giklmρ
2
jklm

where ρ2 is the two-body reduced density matrix. Source doesn’t clarify what h and g are, but they are probably
Lucas’s ε and V corresponding to low energy effective models.

Alternatively, one can compute the energy difference from adding an orbital by

Cij = 〈ΨN |ci[H, c†j ]|Ψ
N 〉

This represents the difference EN+1 − EN .
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3.1 Diagonal approximation

If we just take the diagonal elements of Vij and Cij as the eigenvalues mentioned above, we’re taking the approx-
imation that the basis elements are the lowest eigenvalues of the Hamiltonian, and that their ordering is correct.
Then

Cii − Vii = 〈ΨN |ciHc†i |Ψ
N 〉 − 〈ΨN |cic†iH|Ψ

N 〉 −
(
〈ΨN |c†i ciH|Ψ

N 〉 − 〈ΨN |c†iHci|Ψ
N 〉
)

= E(N + 1)− E(N)− E(N) + E(N − 1)

which is akin to the transport gap in a solid: where one excites one electron and moves it far away from the original
cell. This creates an extra electron somewhere in the solid, and an extra hole somewhere else.

Some useful checks for doing calculations:

• If ci is completely unoccupied in |ΨN 〉, then ci|ΨN 〉 = 0 and Vii = 0.

• If ci is completely occupied in |ΨN 〉, then c†i |ΨN 〉 = 0 and Cii = 0.

• You can also consider Cii − Vjj which corresponds to exciting a electron from orbital j to orbital i, and
computing the transport gap.

• Correspondingly, if Cii−Vjj < 0 for any i or j, then the transport gap is negative, and the system can proliferate
exitations, which means something is probably very wrong in the calculation.
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