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1 Introduction and definitions

Stochastic methods often generate samples of random variables belonging to various distributions, call them xi,
where xi is a vector of results from sample i. By averaging these samples, we generate a new random variable, x. If
the central limit theorem applies, we know that

x ∼ N(µ,Σ); P (x|µ,Σ) =
exp

{
− 1

2 (x− µ)T Σ−1(x− µ)
}

(2π)d/2|Σ|1/2
.

µ and Σ represent the true mean and covariance matrix of the distribution that generated the samples, xi.
Now we want to do calculations with these variables, e.g. compute a quantity f(x). This new quantity will be

a new random variable, and it is often useful to estimate the variance of this new distribution, and estimate how it
fluctuates around f(µ). This is what I mean by propagation of uncertainty.

2 Linear functions

Let’s represent the function as f(x) =
∑

j cjx
(j) = c · x. Because expectations are linear,

〈f(x)〉 = c · 〈x〉 = c · µ = f(µ).

So the mean of the new distribution the same as if we had used µ. That’s reassuring! But the variance about this
value is also important:

〈(f(x)− f(µ))2〉 = 〈c · (x− µ)2〉 =

〈(
1

N

∑
i

c · xi − c · µ

)2〉

=
1

N2

〈∑
ik

(
ckx

(k)
i − ckµ(k)

)2〉

=
1

N2

∑
ijkl

ckcl

〈(
x
(k)
i − µ(k)

)(
x
(l)
j − µ

(l)
)〉

. (1)
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Now assuming the samples xi are independent and i.i.d., which is already required for the central limit theorem,
this reduces to covariance matrix (Σ) of the variables x(k) divided by N , the number of samples when taking the
mean. This is because the covariance of random variances in two samples is zero (independent), while the covariance
between each sample is the same (knocking out factor one N).

Var[f(x)] =
1

N

∑
kl

ckclΣkl =
1

N
cT Σc.

The variance of the final result is a weighted sum of the covariances of the arguments. The weights are the coefficients
of the two things that are varied. A common case is that f(x) ∝

∑
k x

(k). In that case, if two variables are perfectly
negatively correlated, their errors will cancel!

Final note: you may notice this is different from by a factor of N from the wikipedia equation. This is because
I’ve assumed you did some averaging before plugging things in. If you use the case N = 1 it recovers the case of
Var[f(x)], where you apply f on each sample during your run.

2.1 Linearization

Nonlinear functions are sometimes approximated as linear functions using the Taylor expansion. A convenient place
to expand is around µ because then things will cancel in the covariance. Later it will become apparent that this
approximation is good for distributions that are peaked around µ, which is often the case.

f(x) ≈ f(µ) +
∑
k

∂kf(µ)(x(k) − µ) (2)

A few steps will show you that in this case, ck = ∂kf(µ), and out pops the normal propagation of error formula (on
wikipedia):

Σf = JΣJT

where Σf is the covariance matrix for f and Jij = ∂f (i)/∂x(j) is the Jacobian of f(x). In the case that Σ is diagonal,
the even more common formula makes its appearance:

Var[f(x)] =
∑
k

(∂kf(µ))2Var[x(k)].

⇐⇒ σ2
f =

∑
k

(
∂f

∂x(k)

)2

σ2
x(k)

Of course, we often don’t have ∂kf(µ), so this is approximated as ∂kf(x). The accuracy of this approximation can
be understood in the discussion of (3).

3 Taylor expansion

If your function is nonlinear but is sharply peaked around the mean, a Taylor expansion may be a good approximation.
Taylor expansions are usually approximations that depend on taking powers of a small parameter. In this case the
small parameter will be the various products of (x(i)−µ(i)), which will be close to zero, particularly when the average
is over many samples. These equations are also more accurate the fewer nonzero derivatives f has. For example,
f(x) = x2 will have an exact formula that isn’t too complicated. The first step is linearization[2.1], but that analysis
doesn’t cover errors or systematic improvement.

The multidimensional Taylor expansion takes the form:

f(x) = f(µ) +

∞∑
n1,...,nd=1

∏
i

(x(i) − µ(i))ni

ni!
∂ni
i f(µ)

The linearized form (2) comes about by dropping terms with more than one factor of (xi − µi), which means (1)
only first-order derivatives are involved, and (2) only linear terms are present. The resulting Var[f ] only involved
covariances because it arises from squaring a linear function. If we keep additional terms, therefore, the expressions
will have higher moments of the distribution. These higher moments represent the errors of the linearization, and
quickly go to zero as the distribution becomes sharply peaked around µ (which happens with the central limit
theorem, for instance).
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3.1 Corrections to linearization

To derive more accurate formula, choose where to truncate and follow a similar procedure to linear functions (Sec. 2).
We’ll need the third order term in order to get a correction to the variance of f(x), since that is already second order.

〈f(x)〉 ≈ f(µ) +
∑
i

(〈x(i)〉 − µ(i))∂if(µ) +
∑
i,j

〈(x(i) − µ(i))(x(j) − µ(j))〉∂ijf(µ)

+
∑
i,j,k

〈(x(i) − µ(i))(x(j) − µ(j))(x(k) − µ(k))〉∂ijkf(µ)

Like before, the first order is zero, while the third term becomes the same expression worked on in (1). Thus the
second-order correction is related to covariance of the variables:

〈f(x)〉 ≈ f(µ) +
∑
i,j

Cov[x(i), x(j)]∂ijf(µ) = f(µ) +
1

N

∑
i,j

Cov[x(i), x(j)]∂ijf(µ)

= f(µ) +
1

N
Tr(ΣH), (3)

where H is the Hessian of f .
To compute the next order correction to the variance, I square the expressions and drop everything of order

higher than 3.

〈f(x)2〉 = f(µ)2 +
∑
ij

〈(x(i) − µ(i))(x(j) − µ(j))〉∂if(µ)∂jf(µ)

+ 2f(µ)
∑
i

〈x(i) − µ(i)〉∂if(µ)

+ 2f(µ)
∑
ij

〈(x(i) − µ(i))(x(j) − µ(j))〉∂ijf(µ)

+ 2
∑
ijk

〈(x(i) − µ(i))(x(j) − µ(j))(x(k) − µ(k))〉∂if(µ)∂jkf(µ)

The second-order term was already derived in Sec. 2. Computing 〈f(x)2〉−〈f(x)2〉 will cancel everything multiplying
f(µ). The first order term is zero as should be familiar by now. What’s left over is

Var[f(x)] = JΣJT + 2
∑
ijk

〈(x(i) − µ(i))(x(j) − µ(j))(x(k) − µ(k))〉(∂if(µ)∂jkf(µ)− f(µ)∂ijkf(µ)).

Thus the variance formula is also only exact for linear functions, and the very next order is nonzero.

4 Bayesian error analysis

5 Bootstrapping

6 Lemmas

Here’s some generic results that are useful but not important to understand the general idea.

7 Expectations of products of independent random variables

Being independent means that for a set of random variables x = {xi}, pX(x) =
∏

i pXi
(xi), i.e. the probability

distribution factorizes. As we’ll see this implies that Cov[xi, xj ] ∝ δij , but the inverse is not necessarily true because
it also says something about all the higher moments. Without loss of generality, let xi all have mean zero, because
otherwise we can define a new variable yi = xi − µi to shift it to zero.

Being independent,〈∏
i

xni
i

〉
=

∫
ρX(x)

∏
i

dxix
ni
i =

∏
i

∫
dxiρXi

(xi)x
ni
i =

∏
i

〈xni
i 〉.
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This implies Cov[xi, xj ] = 0 because the distributions each have mean zero. But the inverse is not true because
among other things, all moments involving ni = 1 for any i will also be zero.
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