Contents

1	Non	orthogonal bases	1
	1.1	Resolution of the identity	1
	1.2	Change of basis matrix	1

1 Nonorthogonal bases

Reference:

https://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node26.html

A lot of the expressions we're used to seeing in orthogonal bases change a little when using nonorthogonal bases. It's useful to define the overlap matrix:

$$S_{ij} = \langle \phi_i | \phi_j \rangle$$

In the case of an orthogonal matrix it is the identity, and later on, we'll see it can play the role of a metric.

1.1 Resolution of the identity

The resolution of the identity changes with an overlap matrix. The normal resolution of the identity is

$$\sum_i |\phi_i\rangle \langle \phi_i| = \mathbf{1}$$

This works because this operator that we defined acts the same as the identity operator on an arbitrary vector, $|v\rangle$:

$$|v
angle = \sum_{i} |\phi_i
angle \langle \phi_i |v
angle$$

This is true because it is simply the result of expanding the vector in that basis:

$$|v\rangle \equiv \sum_{j} |\phi_{j}\rangle c_{j}$$
$$\langle \phi_{i}|v\rangle = \sum_{j} \langle \phi_{i}|\phi_{j}\rangle c_{j} = \sum_{j} \delta_{ij}c_{j} = c_{i}$$

Note the appearance of δ_{ij} is directly from orthogonality.

To generalize this expression, imagine trying to perform the same steps:

$$\begin{split} |v\rangle &\equiv \sum_{j} |\varphi_{j}\rangle c_{j} \\ \langle \varphi_{i}|v\rangle &= \sum_{j} \langle \varphi_{i}|\varphi_{j}\rangle c_{j} = \sum_{j} S_{ij}c_{j} = Sc \\ \Longrightarrow \sum_{i} S_{ki}^{-1} \langle \varphi_{i}|v\rangle &= \sum_{ij} S_{ki}^{-1} S_{ij}c_{j} = \sum_{j} \delta_{kj}c_{j} = c_{k} \\ \Longrightarrow |v\rangle &= \sum_{ij} |\varphi_{j}\rangle S_{ji}^{-1} \langle \varphi_{i}|v\rangle \\ \Longrightarrow \sum_{ij} |\varphi_{i}\rangle S_{ij}^{-1} \langle \varphi_{j}| = \mathbf{1} \end{split}$$

The final statement is the new resolution of the identity.

1.2 Change of basis matrix

Now that I have the resolution of the identity, changing bases is easy. In the case of orthogonal basis:

$$|v\rangle = \sum_{i} |\phi_i\rangle \langle \phi_i |v\rangle \equiv |\phi_i\rangle v_i^q$$

This is the representation of $|v\rangle$ in the $|\phi_i\rangle$ basis. The column vector is the list $(\langle \phi_1 | v \rangle, ..., \langle \phi_N | v \rangle)$. With another orthogonal basis, $|\theta_i\rangle$,

$$|v\rangle = \sum_{ij} |\theta_i\rangle \langle \theta_i |\phi_j\rangle \langle \phi_j |v\rangle = \sum_{ij} |\theta_i\rangle A_{ij} v_j^{\phi} \equiv \sum_i |\theta_i\rangle v_i^{\theta}$$

where A_{ij} is the change-of-basis from ϕ -basis to θ -basis, and

$$A_{ij} \equiv \langle \theta_i | \phi_j \rangle$$

Notice the columns of this matrix are the representations of $|\phi_j\rangle$ in the θ -basis. If the vector space is real, then the rows are representations of $|\theta_i\rangle$ in the ϕ -basis.

In the case of a nonorthogonal basis, $|\varphi_i\rangle$, the identity is different. The expression for the vector is

$$|v\rangle = \sum_{ij} |\varphi_i\rangle S_{ij}^{-1} \langle \varphi_j | v\rangle \equiv \sum_i |\varphi_i\rangle v_i^{\varphi}$$

So now the components are $v_i^{\varphi} \equiv S_{ij}^{-1} \langle \varphi_j | v \rangle$. Another nonorthogonal basis will have another overlap matrix: $Q_{ij} \equiv \langle \vartheta_i | \vartheta_j \rangle$.

$$|v\rangle = \sum_{kli} |\vartheta_k\rangle Q_{kl}^{-1} \langle \vartheta_l | \varphi_i \rangle v_i^{\varphi} \equiv \sum_k |\vartheta_k\rangle B_{ki} v_i^{\varphi} \equiv \sum_k |\vartheta_k\rangle v_k^{\vartheta}$$

Now

$$B_{ki} \equiv Q_{kl}^{-1} \langle \vartheta_l | \varphi_i \rangle$$

is the change-of-basis matrix from the φ -basis to the ϑ -basis. Note that, like before, the columns of B are the representations of $|\varphi_i\rangle$ in the ϑ -basis.

For a more concrete example, working only with numbers and no abstract vectors, consider if you have a vector represented in an nonorthogonal basis set. I'm going to use Einstein notation for the rest of the section. This means you have the numbers $v_i^{\varphi} = \sum_j S_{ij}^{-1} \langle \varphi_j | v \rangle$. Now you want the representation in an orthogonal basis set, $v_i^{\phi} = \langle \phi_i | v \rangle$, and you know the orthogonal basis elements represented in the nonorthogonal basis set: $[\phi_k^{\varphi}]_i = S_{ij}^{-1} \langle \varphi_j | \phi_k \rangle$. The relationship between the two can be drawn as follows:

$$\begin{aligned} \langle \phi_i | v \rangle &= \langle \phi_i | \varphi_j \rangle S_{jk}^{-1} \langle \varphi_k | v \rangle = \langle \phi_i | \varphi_j \rangle S_{jk}^{-1} \delta_{kl} \langle \varphi_l | v \rangle = \langle \phi_i | \varphi_j \rangle S_{jk}^{-1} S_{km} S_{ml}^{-1} \langle \varphi_l | v \rangle \\ &= [\phi_i^{\varphi}]_k S_{km} v_m^{\varphi} \end{aligned}$$

The extra S comes about by needing to provide an S^{-1} for our two representations of vectors in the nonorthogonal basis.