Contents

1 Nonorthogonal bases

Reference:
https://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node26.html
A lot of the expressions we're used to seeing in orthogonal bases change a little when using nonorthogonal bases. It's useful to define the overlap matrix:

$$
S_{i j}=\left\langle\phi_{i} \mid \phi_{j}\right\rangle
$$

In the case of an orthogonal matrix it is the identity, and later on, we'll see it can play the role of a metric.

1.1 Resolution of the identity

The resolution of the identity changes with an overlap matrix. The normal resolution of the identity is

$$
\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|=\mathbf{1}
$$

This works because this operator that we defined acts the same as the identity operator on an arbitrary vector, $|v\rangle$:

$$
|v\rangle=\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i} \mid v\right\rangle
$$

This is true because it is simply the result of expanding the vector in that basis:

$$
\begin{aligned}
|v\rangle & \equiv \sum_{j}\left|\phi_{j}\right\rangle c_{j} \\
\left\langle\phi_{i} \mid v\right\rangle & =\sum_{j}\left\langle\phi_{i} \mid \phi_{j}\right\rangle c_{j}=\sum_{j} \delta_{i j} c_{j}=c_{i}
\end{aligned}
$$

Note the appearance of $\delta_{i j}$ is directly from orthogonality.
To generalize this expression, imagine trying to perform the same steps:

$$
\begin{aligned}
|v\rangle & \equiv \sum_{j}\left|\varphi_{j}\right\rangle c_{j} \\
\left\langle\varphi_{i} \mid v\right\rangle & =\sum_{j}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle c_{j}=\sum_{j} S_{i j} c_{j}=S c \\
\Longrightarrow \sum_{i} S_{k i}^{-1}\left\langle\varphi_{i} \mid v\right\rangle & =\sum_{i j} S_{k i}^{-1} S_{i j} c_{j}=\sum_{j} \delta_{k j} c_{j}=c_{k} \\
\Longrightarrow|v\rangle & =\sum_{i j}\left|\varphi_{j}\right\rangle S_{j i}^{-1}\left\langle\varphi_{i} \mid v\right\rangle \\
\Longrightarrow \sum_{i j}\left|\varphi_{i}\right\rangle S_{i j}^{-1}\left\langle\varphi_{j}\right| & =\mathbf{1}
\end{aligned}
$$

The final statement is the new resolution of the identity.

1.2 Change of basis matrix

Now that I have the resolution of the identity, changing bases is easy. In the case of orthogonal basis:

$$
|v\rangle=\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i} \mid v\right\rangle \equiv\left|\phi_{i}\right\rangle v_{i}^{\phi}
$$

This is the representation of $|v\rangle$ in the $\left|\phi_{i}\right\rangle$ basis. The column vector is the list $\left(\left\langle\phi_{1} \mid v\right\rangle, \ldots,\left\langle\phi_{N} \mid v\right\rangle\right)$. With another orthogonal basis, $\left|\theta_{i}\right\rangle$,

$$
|v\rangle=\sum_{i j}\left|\theta_{i}\right\rangle\left\langle\theta_{i} \mid \phi_{j}\right\rangle\left\langle\phi_{j} \mid v\right\rangle=\sum_{i j}\left|\theta_{i}\right\rangle A_{i j} v_{j}^{\phi} \equiv \sum_{i}\left|\theta_{i}\right\rangle v_{i}^{\theta}
$$

where $A_{i j}$ is the change-of-basis from ϕ-basis to θ-basis, and

$$
A_{i j} \equiv\left\langle\theta_{i} \mid \phi_{j}\right\rangle
$$

Notice the columns of this matrix are the representations of $\left|\phi_{j}\right\rangle$ in the θ-basis. If the vector space is real, then the rows are representations of $\left|\theta_{i}\right\rangle$ in the ϕ-basis.

In the case of a nonorthogonal basis, $\left|\varphi_{i}\right\rangle$, the identity is different. The expression for the vector is

$$
|v\rangle=\sum_{i j}\left|\varphi_{i}\right\rangle S_{i j}^{-1}\left\langle\varphi_{j} \mid v\right\rangle \equiv \sum_{i}\left|\varphi_{i}\right\rangle v_{i}^{\varphi}
$$

So now the components are $v_{i}^{\varphi} \equiv S_{i j}^{-1}\left\langle\varphi_{j} \mid v\right\rangle$. Another nonorthogonal basis will have another overlap matrix: $Q_{i j} \equiv$ $\left\langle\vartheta_{i} \mid \vartheta_{j}\right\rangle$.

$$
|v\rangle=\sum_{k l i}\left|\vartheta_{k}\right\rangle Q_{k l}^{-1}\left\langle\vartheta_{l} \mid \varphi_{i}\right\rangle v_{i}^{\varphi} \equiv \sum_{k}\left|\vartheta_{k}\right\rangle B_{k i} v_{i}^{\varphi} \equiv \sum_{k}\left|\vartheta_{k}\right\rangle v_{k}^{\vartheta}
$$

Now

$$
B_{k i} \equiv Q_{k l}^{-1}\left\langle\vartheta_{l} \mid \varphi_{i}\right\rangle
$$

is the change-of-basis matrix from the φ-basis to the ϑ-basis. Note that, like before, the columns of B are the representations of $\left|\varphi_{i}\right\rangle$ in the ϑ-basis.

For a more concrete example, working only with numbers and no abstract vectors, consider if you have a vector represented in an nonorthogonal basis set. I'm going to use Einstein notation for the rest of the section. This means you have the numbers $v_{i}^{\varphi}=\sum_{j} S_{i j}^{-1}\left\langle\varphi_{j} \mid v\right\rangle$. Now you want the representation in an orthogonal basis set, $v_{i}^{\phi}=\left\langle\phi_{i} \mid v\right\rangle$, and you know the orthogonal basis elements represented in the nonorthogonal basis set: $\left[\phi_{k}^{\varphi}\right]_{i}=S_{i j}^{-1}\left\langle\varphi_{j} \mid \phi_{k}\right\rangle$. The relationship between the two can be drawn as follows:

$$
\begin{aligned}
\left\langle\phi_{i} \mid v\right\rangle & =\left\langle\phi_{i} \mid \varphi_{j}\right\rangle S_{j k}^{-1}\left\langle\varphi_{k} \mid v\right\rangle=\left\langle\phi_{i} \mid \varphi_{j}\right\rangle S_{j k}^{-1} \delta_{k l}\left\langle\varphi_{l} \mid v\right\rangle=\left\langle\phi_{i} \mid \varphi_{j}\right\rangle S_{j k}^{-1} S_{k m} S_{m l}^{-1}\left\langle\varphi_{l} \mid v\right\rangle \\
& =\left[\phi_{i}^{\varphi}\right]_{k} S_{k m} v_{m}^{\varphi}
\end{aligned}
$$

The extra S comes about by needing to provide an S^{-1} for our two representations of vectors in the nonorthogonal basis.

