Contents

1	Sym	nmetry and the Hamiltonian	1
	1.1	One-body terms that are zero by symmetry	1
		1.1.1 Example	1
	1.2	Symmetry-related terms	1
		1.2.1 Example of symmetry-related terms	2

1 Symmetry and the Hamiltonian

Symmetries are quite helpful in coarse graining, because they limit the number of possible model possible model parameters. Given an operator O that commutes with a symmetry operator S, e.g. [O, S] = 0, there are a number of benefits that occur when choosing to express O in terms of eigenstates of S. As shown below, many terms of O in the basis of eigenstates of S are zero. Additionally many of the terms of O will be constrained to be equal. This usually means that O is either sparse, or representable with only a few free parameters.

1.1 One-body terms that are zero by symmetry

For a one-body Hamiltonian, the space is all just one-body states. Let \mathcal{H} be that Hamiltonian, and S be a symmetry operator. If \mathcal{H} is invariant to that symmetry,

 $[\mathcal{H}, S] = 0$

You can show that this implies \mathcal{H} is block-diagonal in the eigenstates of S. Let ϕ_i have the property that $S\phi_i = \lambda_i\phi_i$. Then $S(\mathcal{H}\phi_i) = \lambda_i(\mathcal{H}\phi_i)$, using the commutator. This implies that $\mathcal{H}\phi_i$ is a state in the degenerate subspace of ϕ_i .

Let $S\phi_j = \lambda_j \phi_j$, and $\lambda_j \neq \lambda_i$. Then

 $\langle \phi_i | \mathcal{H} \phi_i \rangle = 0$

if ϕ_j is orthogonal to all the eigenstates of a different eigenvalue. Is it possible to show that this is true for any possible S?

1.1.1 Example

Consider the model Hamiltonian,

$$\mathcal{H}_{\text{eff}} = \sum_{i} \epsilon_{i} n_{i} + \sum_{ij} t_{ij} c_{i}^{\dagger} c_{j}$$

The matrix representation of this model is $\epsilon_i \delta_{ij} + (1 - \delta_{ij}) t_{ij}$.

Consider if you have an orthonormal basis of eigenstates of a symmetry operator S, where $[\mathcal{H}, S] = 0$. Consider if this is the basis of \mathcal{H}_{eff} . This requires that $t_{ij} = 0$ between eigenstate of S with different eigenvalues.

1.2 Symmetry-related terms

Consider if $[\mathcal{H}, S] = 0$ for some symmetry operator S.

$$[\mathcal{H}, S] = 0 \iff \mathcal{H}S - S\mathcal{H} = 0 \iff S^{-1}\mathcal{H}S = \mathcal{H}$$

If S represents a change of basis, such as a unitary operator, then this suggests that \mathcal{H} is invariant to the change of basis represented by S.

Now let ϕ_i be some basis for \mathcal{H} , Then

$$\langle \phi_i | \mathcal{H} | \phi_j \rangle = \langle S \phi_i | \mathcal{H} | S \phi_j \rangle$$

Thus, the element is the same as the element relating the basis set elements generated by S. In particular, if $S\phi_i = \phi_i$ and $S\phi_j = \phi_k$, then $\langle \phi_i | \mathcal{H} | \phi_j \rangle = \langle \phi_i | \mathcal{H} | \phi_k \rangle$.

1.2.1 Example of symmetry-related terms

For the FeSe diatomic molecule, oriented along the \hat{z} , for S as rotation about \hat{z} by $\pi/8$, the Se s state is invariant and the $d_{x^2-y^2}$ is mapped to d_{xy} . Thus the hopping element between the s and $d_{x^2-y^2}$ is the same as the hopping to d_{xy} .

Another example: nearest neighbor hopping terms are all the same between the same atomic pairs by translational symmetry.